NATER WELL CONSTRUCTION

Statute: Part 127 – Water Supply and Sewer Systems Act 368, PA 1978, as amended (Public Health Code) (MCLA 333.12701 – 12715)

R 325.1601 – 325.1781

- Part 1 Well Construction Code
- Part 2 Drilling Contractors' & Pump Installers' Registration
- Part 3 Drilling Machines & Service
 Vehicles
- Part 4 Dewatering Wells

FIRST BECAME EFFECTIVE FEB. 14, 1967 LAST REVISION – EFFECTIVE APRIL 21, 1994

For public water supply wells - Apply Part 8, Act 399, PA 1976 in addition to Part 127, Public Health Code

U. S. Commerce, Bureau of Census1990 Detailed Housing Characteristics

HIGHEST IN NATION!

SANITARY
WELL
COMPLETION
PRACTICES

PROPER
WELL
CONSTRUCTION
MATERIALS

TRAINED
PROFESSIONAL
WATER WELL
CONTRACTORS

COMPONENTS
OF A
SAFE & RELIABLE
WATER WELL

TARGET
AQUIFER HAS
AMPLE YIELD
&
SAFE WATER

SUFFICIENT
SEPARATION
FROM
CONTAMINATION
SOURCES

ROUTINE MONITORING OF WATER QUALITY PROPER
WATER
SYSTEM
MAINTENANCE

DEFICIENT WELL HEAD (CRACKED WELL CAP OR OPEN VENT) OLD WELLS WITH CORRODED WELL CASING

POOR CONSTRUCTION (UNSEALED ANNULUS OR DUG WELL)

SHALLOW DEPTH (OR SHORT CASING IN BEDROCK)

WELLS
MOST VUNERABLE
TO MICROBIAL
CONTAMINATION

FLOODING,
BURIED WELL HEAD
OR SUBMERGED
IN WELL PIT

TOO CLOSE TO SEPTIC SYSTEM, AGRIC. RUNOFF OR ABANDONED WELL SEWER LINE BREAK, SEWAGE OVERFLOW OR CROSS-CONNECTION

WATER WELL USE

HOUSEHOLD 98%

COMMON WATER WELL TERMS

Types of Water Wells

WATER WELL DESIGN

- Provide well that meets needs of owner
- Obtain highest yield with minimal drawdown (consistent w/ aquifer capabilities)
- Provide suitable quality water (potable and turbidity-free for drinking water wells)
- Provide long service life (25+ years)

NEW: Minimize impacts on neighboring wells & aquatic environments

DRILLED WELLS

- ☐ Terminated in glacial drift (sand, gravel) or bedrock
- ☐ Constructed with rotary, cable tool, jetting, hollow rod or auger drilling methods
- □ 2 in. or larger casing(Domestic wells: 4 6 inch diameter)

DRILLED WELLS

- ☐ Casing material: Steel or PVC plastic
- ☐ Installed by well drilling contractors
- ☐ Much more common than driven or dug wells
- ☐ Most are >50 ft. deep (avg. 125 ft.)
- ☐ MOST SANITARY WELL TYPE

WATER WELL DRILLING METHODS

IN MICHIGAN

MOST COMMON:

LESS COMMON:

ROTARY (Mud & Air)

84%

CABLE TOOL 10% 2.5%

JETTING 1%

HOLLOW ROD 0THER 2%

EMERGING TECHNOLOGY

DUAL TUBE ROTARY

HORIZONTAL

SONIC

TOP HEAD DRIVE ROTARY

DRILLING RIG OPERATOR CHECKING DRILL CUTTINGS

DRILLER COMPLETING THE WATER WELL RECORD

WATER WELL & PUMP RECORD DESCRIBES:

WELL DEPTH
CASING LENGTH
GEOLOGIC MATERIALS
PENETRATED
STATIC WATER LEVEL
PUMPING WATER LEVEL
PUMPING RATE
GROUTING MATERIALS
WELL LOCATION
PUMPING EQUIPMENT
DRILLERS NAME
DRILLING RIG OPERATOR

TYPICAL ROTARY WELL CONSTRUCTION SEQUENCE

OVERSIZED INSTALL CASING IDENTIFY BOREHOLE AQUIFER (& SCREEN) **DRILLED** 5 6 **YIELD TEST GROUT** WELL **ANNULAR DEVELOPMENT WATER SAMPLING** SPACE

Bentonite Drilling Fluid- Functions -

- REMOVAL OF DRILL CUTTINGS FROM BOREHOLE
- STABILIZE THE BOREHOLE
- COOL AND LUBRICATE DRILL BIT
- CONTROL FLUID LOSS TO GEOLOGIC FORMATIONS
- DROP DRILL CUTTINGS INTO MUD PIT
- FACILITATE COLLECTION OF GEOLOGIC DATA
- SUSPEND CUTTINGS WHEN DRILLING FLUID CIRCULATION STOPS

Temporary well cap - installed between well drilling and pump hook-up

Sanitary well cap (overlapping & self-draining)

Screened air vent on underside of well cap

Tight seal between cap and casing

Electrical conduit

Well casing pipe

This drilled well has an older style well cap that does not seal tightly to the well casing.

Insects and small animals can enter the well and contaminate the drinking water.

Caps of this design are not acceptable and should be replaced.

DRILLED WELL COMPONENTS

DRILLED WELL COMPONENTS

WELL CAP BEDROCK BOREHOLE **WELL** CASING **GROUT OPEN HOLE IN NO CASING** BEDROCK **IN ROCK BOREHOLE AQUIFER**

BOREHOLE

Vertical circular boring to reach aquifer (water bearing geologic material)

MINIMUM 2 IN. LARGER THAN CASING IF GROUTING THRU CASING

MINIMUM 2 7/8 IN.
LARGER THAN
CASING IF
GROUTING WITH
GROUT PIPE
OUTSIDE CASING

Steel or plastic pipe installed to keep borehole wall from collapsing

Houses
submersible pump
or turbine bowls &
drop pipe

WELL CAP or SEAL

Mechanical device to prevent contaminants (including insects) from entering well casing **OVERLAPPING**

SEALED TIGHTLY
TO CASING

SCREENED AIR VENT

TIGHT SEAL TO ELECTRICAL CONDUIT

Device that seals space between casing & telescoped screen to keep sand out of well

PACKER

(Coupling with neoprene rubber flanges)

Intake device to allow water to enter well and keep sand out

Structural support of aquifer material

Wire-wrapped screen most common

Impermeable cement or bentonite clay slurry placed in annular space between borehole and casing to:

- prevent well contamination
- maintain separation of aquifers
 - preserve artesian aquifers

DOWNWARD LEAKAGE AROUND UNGROUTED CASING

UPWARD LEAKAGE AROUND UNGROUTED CASING

(Artesian Condition)

UNCONFINED AQUIFER

CONFINED AQUIFER

STATIC WATER LEVEL

CONFINING LAYER

UPWARD LEAKAGE

BENEFITS OF WELL GROUTING

- PREVENT CONTAMINANT MIGRATION
 FROM SURFACE (Keeps surface runoff
 from moving downward along well casing)
- SEAL OFF POOR QUALITY AQUIFERS (Prevents mixing of water from different aquifers)
- PRESERVE ARTESIAN AQUIFER PROPERTIES
- ADDED SEALING OF CASING JOINTS

WELL GROUTING MATERIALS

TYPE

COMPOSITION

CHARACTERISTICS

BENTONITE **SLURRY**

POWDERED BENTONITE & WATER

POLYMER & WATER

•FLEXIBLE LOWER STRENGTH SEAL

MAY SUBSIDE IN VADOSE ZONE

•MOST POPULAR DUE TO LOWER COST AND TARGETED MARKETING

GRANULAR BENTONITE,

WASH-OUT UNDER ARTESIAN PRESSURE

■NO HEAT OF HYDRATION

NEAT CEMENT

PORTLAND CEMENT & WATER

- •MORE WIDELY USED IN OIL FIELD THAN WATER WELLS
- HIGHER STRENGTH RIGID SEAL
- **BEST CHOICE FOR BEDROCK WELLS** & FLOWING WELLS
- ***HEAT OF HYDRATION & MICROANNULUS CONCERNS**

CONCRETE GROUT

PORTLAND CEMENT, SAND & WATER

- •MORE PERMEABLE THAN NEAT **CEMENT GROUT**
- •MORE DIFFICULT TO PUMP (ABRASIVE)
- **GOOD CHOICE FOR LARGE DIAMETER WELLS**

GRANULAR BENTONITE
POURED INTO
MIX WATER

PORTABLE
GROUTING MACHINE
(MIXER & PUMP)

GROUT PIPE TO BOTTOM OF ANNULAR SPACE

BENTONITE GROUT
RETURN
AT SURFACE
(GELATIN – OATMEAL TEXTURE)

WELL GROUTING

ROTARY

VS.

CABLE TOOL

GROUT PIPE IN ANNULAR SPACE

WELL CASING IN OVERSIZED BOREHOLE

DRY GRANULAR BENTONITE POURED AROUND CASING

GROUT FOLLOWS DRIVE SHOE
AS CASING IS DRIVEN

- DEPTH OF GROUT TRAVEL IS UNCERTAIN
- LIMITED BY HIGH WATER TABLE

GROUT PUMPED FROM BOTTOM

BEDROCK WELL DETAILS

CASING PIPE

GROUT

TOP OF BEDROCK

BEDROCK BOREHOLE (SMALLER DIAMETER THAN CASING)

SHALE TRAP OR SHALE PACKER

PREVENTS GROUT SPILLAGE INTO BEDROCK BOREHOLE

BETTER SEAL AT BEDROCK INTERFACE

SIGNIFICANT RAINFALL OVER SHALLOW CARBONATE BEDROCK CAN CAUSE:

- SURGE IN WATER LEVELS (Increases hydraulic pressure)
- INCREASED SURFACE WATER-TO-GROUNDWATER INTERCHANGE
- FLUSHING OF TURBIDITY & ORGANIC MATTER INTO GROUNDWATER

PROPER WELL CONSTRUCTION IN KARST

SURFACE

GLACIAL DRIFT
OVER
BEDROCK

CASING & GROUT EXTENDING THRU UPPER BEDROCK

IF BEDROCK WITHIN 25 FT OF SURFACE:
MINIMUM 25 FT OF CASING GROUTED WITH NEAT CEMENT –
BENTONITE GROUT NOT PERMITTED

TOP OF BEDROCK

SEVERELY WEATHERED LIMESTONE BEDROCK

FRACTURES & INTERCONNECTED SOLUTION CHANNELS

SHALE

LIMESTONE

UNCASED BOREHOLE IN BEDROCK

POOR WELL CONSTRUCTION IN KARST

GLACIAL DRIFT
OVER
BEDROCK

CASING & GROUT ONLY EXTEND INTO
TOP OF BEDROCK
EVEN THROUGH CASING & GROUTING EXTENDS 25 FT.
SAFE WATER QUALITY CANNOT BE ASSURRED

TOP OF BEDROCK

SEVERELY WEATHERED
LIMESTONE BEDROCK
FRACTURES & INTERCONNECTED

SHALE

BECAUSE BOREHOLE BELOW CASING INTERCEPTS
SHALLOW, FRACTURED BEDROCK... WELL IS VULNERABLE
TO CONTAMINATION FROM SEPTIC SYSTEMS, LUSTs,
AGRICULTURAL CHEMICALS & SURFACE WATER INFILTRATION

SOLUTION CHANNELS

SYMPTOMS – E.COLI OR SURFACE WATER INDICATORS PRESENT AND SUSCEPTIBLE TO TURBIDITY AFTER HEAVY RAINFALL

WELL CASING DEPTH IN KARST

CASING MATERIALS COMPARISON

PVC PLASTIC

VS.

STEEL

Non-corroding

Lower strength

Fewer water quality complaints

Rotary construction only

1/3 cost of steel

Corrodes

Higher strength

Rusty water

Suitable for any drilling method

No heat of hydration impact from cement grout

SDR 17 needed past 200 ft.

WELL DIAMETER:

Doubling well diameter appreciably increases well yield

SCREENED WELLS

Naturally Developed

Filter Packed

(a/k/a Gravel-Packed)

WELL SCREEN
SET IN
NATIVE GEOLOGIC
MATERIALS
(SAND OR GRAVEL)

GRADED-WASHED
SAND PLACED
OUTSIDE
WELL SCREEN

FILTER - PACK

BENEFITS

- □ Greater porosity
- ☐ Higher hydraulic conductivity
- □ Reduced drawdown
- Higher yield
- ☐ Reduced entrance velocity

- □Faster development
- □ Easier grouting
- Longer well life
- ☐ Improved well rehabilitation
- Reduce sand pumping

FILTER-PACKED WELL CONSTRUCTION

CASING FILTER-PACK **GROUT SAND PLACED** BETWEEN **CASING BOREHOLE & CENTERING SCREEN BEFORE GUIDES GROUTING** (OPTIONAL) FILTER PACK IS NOT ALLOWED TO EXTEND **SCREEN MORE THAN 10 FEET** ABOVE TOP OF SCREEN

WELL SCREEN SELECTION CRITERIA

Maximize % open area

<u>BEST</u>

CONTINUOUS SLOT WIRE WOUND **WORST**

SAW - CUT OR GAUZE-COVERED

- Non-clogging openings
- Corrosion resistance
 STAINLESS STEEL vs. PVC PLASTIC
- Column & collapse strength

SCREEN SELECTION CRITERIA

Screen opening size based on aquifer material size:

SIEVE ANALYSIS vs. S.W.A.G.

NATURALLY-DEVELOPED WELL:

40% RETENTION OF AQUIFER MATERIAL

FILTER-PACKED WELL:

90% RETENTION OF FILTER SAND

Screen diameter: BASED ON CASING SIZE

PROVIDE WATER ENTRANCE VELOCITY OF...

<0.1 FT./SEC.

MINERAL INCRUSTATION

Lower velocity reduces mineral incrustation

EXTENDS WELL SERVICE LIFE

ENTRANCE VELOCITY = PUMPING RATE SCREEN OPEN AREA

Example: 6 in. Pipe Size X 8 ft. length

10 slot Continuous slot SS

Pumping rate = 75 GPM

Screen open area (from manufacturer) = $0.21 \text{ ft}^2/\text{lin ft}$ Total screen area = $8 \text{ ft } \times 0.21 \text{ ft}^2/\text{lin ft} = 1.68 \text{ ft}^2$

CONVERT GPM TO FT3/SEC

75 GPM x 1 ft 3 /7.48 gal x 1 min/60 sec = 0.167 ft 3 /sec

 $0.167 \text{ ft}^3/\text{sec} / 1.68 \text{ ft}^2 = 0.099 \text{ ft/sec}$

Is an entrance velocity of 0.099 ft/sec acceptable?

CROSS-SECTION
OF
SCREEN WIRE

IN KNOWN FLOWING WELL AREAS:

HIGH-CAPACITY WELL DESIGN CONCERNS

12" INNER CASING **STRING**

INNER CASING IS "PERMANENT CASING". WELL CODE REQUIRES GROUTING FROM NOT MORE THAN 10 FT. ABOVE SCREEN UP TO SURFACE - ZONE FROM 100 FT. TO 190 FT. IS UNGROUTED AND VIOLATES R 325.1634a OF WELL CODE.

PROBLEMS FROM THIS DESIGN MAY **INCLUDE:**

- COMMINGLING OF WATER FROM SEPARATE AQUIFERS
- STAGNANT WATER IN FILTER PACK **ABOVE SCREEN**

SURFACE 16 " OUTER CASING NEAT CEMENT GROUT 100 FT. **FILTER PACK** SAND (extending into outer casing) WELL **SCREEN** (10 ft. length) 200 FT

DRIVEN WELLS

- ☐ Installed in glacial drift only CANNOT be driven thru boulders or into bedrock
- ☐ Well point driven into ground with post-driver, tripod w/ weight or sledge hammer
 - ☐ 1 1/4 in. to 2 in. diameter

DRIVEN WELLS

- ☐ Installed by property owners
- ☐ Common around lakes and high water table areas
- ☐ Most <35 ft. deep, limited yield (7 gpm or less)

MORE SUSCEPTIBLE TO SURFACE
CONTAMINATION THAN DRILLED WELLS

DUG WELLS

- ☐ Large diameter (18-48 in.)
- ☐ Found in low yield areas (Thumb & SE Michigan)
- ☐ Casing material concrete crocks w/ loose joints

Older wells: stones, brick-lined

☐ Water enters well through loose casing joints

DUG WELLS

- ☐ Older wells hand dug
- ☐ Now installed (on very limited basis) w/bucket augers (backhoes phased out)
- ☐ Low well yield storage in casing (100's of gallons)
- ☐ HIGHLY VULNERABLE TO CONTAMINATION

CDC Findings on Dug Wells

 Dug/bored wells had a positive coliform bacteria rate of about 85%

 Wells with brick, concrete or wood casing (dug wells) had coliform positive rates of 60 – 90 %

From <u>A Survey of the Presence of Contaminants in Water</u>
<u>From Private Wells in Nine Midwestern States</u>, Atlanta, Georgia, U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, 1996

DUG WELLS

 Needs LHD approval under R 325.1674 of well code....before installation

30 in. diameter fiberglass casing (NSF Std. 61 listed) accepted by MDEQ for bucket auger wells

REPLACEMENT FOR CONCRETE CROCKS

Water Quality in the New World

In 1610, Jamestown's Governor proclaimed:

"There shall be no man or woman dare to wash any unclean linen, wash clothes, ... nor rinse or make clean any kettle, pot or pan, or any suchlike vessel within 20 feet of the old well or new pump. Nor shall anyone foresaid within less than quarter mile of the fort, dare to do the necessities of nature, since by these unmanly, slothful, and loathsome immodesties, the whole fort may be choked and poisoned."

REMEMBER.....

ALWAYS DRINK UPSTREAM OF THE HERD

Contact DEQ Well Construction Program at 517-241-1380